国dgedar

ECS3810-26T
Managed 26-Port
Fast Ethernet Switch
Installation Guide

Installation Guide

ECS3810-26T Managed 26-Port Fast Ethernet Switch
Layer 2 Switch
with 24 Fast Ethernet (RJ-45) Ports, 2 Gigabit Ethernet Combination (RJ-45/SFP) Ports, and 1 Fast Ethernet Management Port

Compliances and Safety STATEMENTS

FCC - Class A

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

You are cautioned that changes or modifications not expressly approved by the party responsible for compliance could void your authority to operate the equipment.

You may use unshielded twisted-pair (UTP) for RJ-45 connections - Category 3 or better for 10 Mbps connections, Category 5 or better for 100 Mbps connections, Category 5, 5e, or 6 for 1000 Mbps connections. For fiber optic connections, you may use 50/125 or 62.5/125 micron multimode fiber or 9/125 micron single-mode fiber.

CE Mark Declaration of Conformance for EMI and Safety (EEC)

This information technology equipment complies with the requirements of the Council Directive 89/336/EEC on the Approximation of the laws of the Member States relating to Electromagnetic Compatibility and 73/23/EEC for electrical equipment used within certain voltage limits and the Amendment Directive 93/ $68 / E E C$. For the evaluation of the compliance with these Directives, the following standards were applied:

Emiss	Limit according to EN 550
	Limit for harmonic current emission according to EN 61000-3-2:2006, Class A
	Limitation of voltage fluctuation and flicker in low-voltage supply system according to EN 61000-3-3:2005
Immunity:	- Product family standard according to EN 55024:2001 + A2:2003
	- Electrostatic Discharge according to IEC 61000-4-2:2008
	Radio-frequency electromagnetic field according to IEC 61000-43:2007
	- Electrical fast transient/burst according to IEC 61000-4-4:2004
	- Surge immunity test according to IEC 61000-4-5:2005
	Immunity to conducted disturbances, Induced by radio-frequency fields: IEC 61000-4-6:2008
	- Power frequency magnetic field immunity test according to IEC 61000-4-8:2001
	Voltage dips, short interruptions and voltage variations immunity test according to IEC 61000-4-11:2004
LVD:	- EN 60950-1:2006

Safety Compliance

Warning：Fiber Optic Port Safety

When using a fiber optic port，never look at the transmit
CLASS I
LASER DEVICE laser while it is powered on．Also，never look directly at the fiber TX port and fiber cable ends when they are powered on．

Avertissment：Ports pour fibres optiques－sécurité sur le plan optique

```
DISPOSITIF LASER
    DE CLASSE I
``` Ne regardez jamais le laser tant qu＇il est sous tension．Ne regardez jamais directement le port TX（Transmission）à fibres optiques et les embouts de câbles à fibres optiques tant qu＇ils sont sous tension．

\section*{Warnhinweis：Faseroptikanschlüsse－Optische Sicherheit}

LASERGERÄT DER KLASSE I

Niemals ein Übertragungslaser betrachten，während dieses eingeschaltet ist．Niemals direkt auf den Faser－TX－Anschluß und auf die Faserkabelenden schauen，während diese eingeschaltet sind．

\section*{PSE AlARM}

本製品に同梱いたしております電源コードセットは，本製品専用です。本電源コードセットは，本製品以外の製品並びに他の用途でご使用いただくことは出来ません。製品本体に同梱された電源コードセットを利用し，他製品 の電源コードセットを使用しないで下さい。

\section*{Power Cord Safety}

\section*{Please read the following safety information carefully before installing the switch:}

WARNING: Installation and removal of the unit must be carried out by qualified personnel only.
- The unit must be connected to an earthed (grounded) outlet to comply with international safety standards.
- Do not connect the unit to an A.C. outlet (power supply) without an earth (ground) connection.
- The appliance coupler (the connector to the unit and not the wall plug) must have a configuration for mating with an EN 60320/IEC 320 appliance inlet.
- The socket outlet must be near to the unit and easily accessible. You can only remove power from the unit by disconnecting the power cord from the outlet.
- This unit operates under SELV (Safety Extra Low Voltage) conditions according to IEC 60950. The conditions are only maintained if the equipment to which it is connected also operates under SELV conditions.

France and Peru only
This unit cannot be powered from IT \({ }^{\dagger}\) supplies. If your supplies are of IT type, this unit must be powered by \(230 \mathrm{~V}(2 \mathrm{P}+\mathrm{T})\) via an isolation transformer ratio \(1: 1\), with the secondary connection point labelled Neutral, connected directly to earth (ground).
\({ }^{+}\)Impédance à la terre
Important! Before making connections, make sure you have the correct cord set. Check it (read the label on the cable) against the following:

\section*{Power Cord Set}
\begin{tabular}{|c|c|}
\hline U.S.A. and Canada & \begin{tabular}{l}
The cord set must be UL-approved and CSA certified. \\
The minimum specifications for the flexible cord are: \\
- No. 18 AWG - not longer than 2 meters, or 16 AWG. \\
- Type SV or SJ \\
- 3-conductor \\
The cord set must have a rated current capacity of at least 10 A \\
The attachment plug must be an earth-grounding type with NEMA 5-15P (15 A, 125 V) or NEMA 6-15P (15 A, 250 V) configuration.
\end{tabular} \\
\hline Denmark & The supply plug must comply with Section 107-2-D1, Standard DK2-1a or DK2-5a. \\
\hline Switzerland & The supply plug must comply with SEV/ASE 1011. \\
\hline U.K. & \begin{tabular}{l}
The supply plug must comply with BS1363 (3-pin 13 A) and be fitted with a 5 A fuse which complies with BS1362. \\
The mains cord must be <HAR> or <BASEC> marked and be of type HO3VVF3GO. 75 (minimum).
\end{tabular} \\
\hline Europe & \begin{tabular}{l}
The supply plug must comply with CEE7/7 ("SCHUKO"). \\
The mains cord must be <HAR> or <BASEC> marked and be of type HO3VVF3GO. 75 (minimum).
\end{tabular} \\
\hline
\end{tabular}

IEC-320 receptacle.

\section*{Veuillez lire à fond l'information de la sécurité suivante avant d'installer le Switch:}

AVERTISSEMENT: L'installation et la dépose de ce groupe doivent être confiés à un personnel qualifié.
- Ne branchez pas votre appareil sur une prise secteur (alimentation électrique) lorsqu'il n'y a pas de connexion de mise à la terre (mise à la masse).
- Vous devez raccorder ce groupe à une sortie mise à la terre (mise à la masse) afin de respecter les normes internationales de sécurité.
- Le coupleur d'appareil (le connecteur du groupe et non pas la prise murale) doit respecter une configuration qui permet un branchement sur une entrée d'appareil EN 60320/IEC 320.
- La prise secteur doit se trouver à proximité de l'appareil et son accès doit être facile. Vous ne pouvez mettre l'appareil hors circuit qu'en débranchant son cordon électrique au niveau de cette prise.
- L'appareil fonctionne à une tension extrêmement basse de sécurité qui est conforme à la norme IEC 60950. Ces conditions ne sont maintenues que si l'équipement auquel il est raccordé fonctionne dans les mêmes conditions.

\section*{France et Pérou uniquement:}

Ce groupe ne peut pas être alimenté par un dispositif à impédance à la terre. Si vos alimentations sont du type impédance à la terre, ce groupe doit être alimenté par une tension de \(230 \mathrm{~V}(2 \mathrm{P}+\mathrm{T})\) par le biais d'un transformateur d'isolement à rapport \(1: 1\), avec un point secondaire de connexion portant l'appellation Neutre et avec raccordement direct à la terre (masse).
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Cordon électrique - Il doit être agréé dans le pays d'utilisation} \\
\hline \multirow[t]{4}{*}{Etats-Unis et Canada:} & Le cordon doit avoir reçu I'homologation des UL et un certificat de \\
\hline & \begin{tabular}{l}
Les spécifications minimales pour un cable flexible sont AWG No. 18 , ouAWG No. 16 pour un cable de longueur inférieure à 2 mètres. \\
- type SV ou SJ \\
- 3 conducteurs
\end{tabular} \\
\hline & Le cordon doit être en mesure d'acheminer un courant nominal d'au moins 10 A . \\
\hline & La prise femelle de branchement doit être du type à mise à la terre (mise à la masse) et respecter la configuration NEMA 5-15P (15 A, 125 V) ou NEMA 6-15P (15 A, 250 V). \\
\hline Danemark: & La prise mâle d'alimentation doit respecter la section 107-2 D1 de la norme DK2 1a ou DK2 5a. \\
\hline Suisse: & La prise mâle d'alimentation doit respecter la norme SEV/ASE 1011. \\
\hline Europe & \begin{tabular}{l}
La prise secteur doit être conforme aux normes CEE 7/7 ("SCHUKO") \\
LE cordon secteur doit porter la mention <HAR> ou <BASEC> et doit être de type HO3VVF3GO. 75 (minimum).
\end{tabular} \\
\hline
\end{tabular}

\section*{Bitte unbedingt vor dem Einbauen des Switches die folgenden Sicherheitsanweisungen durchlesen:}

WARNUNG: Die Installation und der Ausbau des Geräts darf nur durch Fachpersonal erfolgen.
- Das Gerät sollte nicht an eine ungeerdete Wechselstromsteckdose angeschlossen werden.
- Das Gerät muß an eine geerdete Steckdose angeschlossen werden, welche die internationalen Sicherheitsnormen erfüllt.
- Der Gerätestecker (der Anschluß an das Gerät, nicht der Wandsteckdosenstecker) muß einen gemäß EN 60320/IEC 320 konfigurierten Geräteeingang haben.
- Die Netzsteckdose muß in der Nähe des Geräts und leicht zugänglich sein. Die Stromversorgung des Geräts kann nur durch Herausziehen des Gerätenetzkabels aus der Netzsteckdose unterbrochen werden.
- Der Betrieb dieses Geräts erfolgt unter den SELV-Bedingungen (Sicherheitskleinstspannung) gemäß IEC 60950. Diese Bedingungen sind nur gegeben, wenn auch die an das Gerät angeschlossenen Geräte unter SELV-Bedingungen betrieben werden.
\begin{tabular}{ll}
\hline Stromkabel. Dies muss von dem Land, in dem es benutzt wird geprüft werden: \\
\hline Schweiz & Dieser Stromstecker muß die SEV/ASE 1011Bestimmungen einhalten. \\
\hline Europe & \begin{tabular}{l}
Das Netzkabel muß vom Typ HO3VVF3GG.75 (Mindestanforderung) \\
sein und die Aufschrift <HAR \(>\) oder <BASEC> tragen. \\
Der Netzstecker muß die Norm CEE 7/7 erfüllen ("SCHUKO").
\end{tabular} \\
\hline
\end{tabular}

\section*{Warnings and Cautionary Messages}

WARning: This product does not contain any serviceable user parts.
WARNing: Installation and removal of the unit must be carried out by qualified personnel only.
Warning: When connecting this device to a power outlet, connect the field ground lead on the tri-pole power plug to a valid earth ground line to prevent electrical hazards.
WARning: This switch uses lasers to transmit signals over fiber optic cable. The lasers are compliant with the requirements of a Class 1 Laser Product and are inherently eye safe in normal operation. However, you should never look directly at a transmit port when it is powered on.

Caution: Wear an anti-static wrist strap or take other suitable measures to prevent electrostatic discharge when handling this equipment.
Caution: Do not plug a phone jack connector in the RJ-45 port. This may damage this device.
Caution: Use only twisted-pair cables with RJ-45 connectors that conform to FCC standards.

\section*{Environmental Statements}

The manufacturer of this product endeavours to sustain an environmentallyfriendly policy throughout the entire production process. This is achieved though the following means:
- Adherence to national legislation and regulations on environmental production standards.
- Conservation of operational resources.
- Waste reduction and safe disposal of all harmful un-recyclable by-products.
- Recycling of all reusable waste content.
- Design of products to maximize recyclables at the end of the product's life span.
- Continual monitoring of safety standards.

\section*{End of Product Life Span}

This product is manufactured in such a way as to allow for the recovery and disposal of all included electrical components once the product has reached the end of its life.

\section*{Manufacturing Materials}

There are no hazardous nor ozone-depleting materials in this product.

\section*{DOCUMENTATION}

All printed documentation for this product uses biodegradable paper that originates from sustained and managed forests. The inks used in the printing process are non-toxic.

\section*{About This Guide}

\section*{Purpose}

This guide details the hardware features of the switch, including the physical and performance-related characteristics, and how to install the switch.

\section*{Audience}

The guide is intended for use by network administrators who are responsible for installing and setting up network equipment; consequently, it assumes a basic working knowledge of LANs (Local Area Networks).

\section*{Conventions}

The following conventions are used throughout this guide to show information:

Note: Emphasizes important information or calls your attention to related features or instructions.

Caution: Alerts you to a potential hazard that could cause loss of data, or damage the system or equipment.

Warning: Alerts you to a potential hazard that could cause personal injury.

\section*{Related Publications}

The following publication gives specific information on how to operate and use the management functions of the switch:

\section*{The Management Guide}

Also, as part of the switch's software, there is an online web-based help that describes all management related features.

\section*{About This Guide}

\section*{Revision History}

This section summarizes the changes in each revision of this guide.

\section*{September 2011 Revision}

This is the first revision of this guide.

\section*{Contents}
Compliances and Safety Statements 5
About This Guide 15
Contents 17
Tables 19
Figures 21
1 Introduction 23
Overview 23
Network Management Options 25
Description of Hardware 26
2 Installing the Switch 31
Selecting a Site 31
Ethernet Cabling 32
Equipment Checklist 33
Mounting 34
Installing an Optional SFP Transceiver 37
Connecting to a Power Source 38
Connecting to the Console Port 41
Connecting to the Alarm Port 42
3 Making Network Connections 45
Connecting Network Devices 45
Twisted-Pair Devices 45
Fiber Optic SFP Devices 46
Connectivity Rules 48
Cable Labeling and Connection Records 51

\section*{Contents}
A Troubleshooting 53
Diagnosing Switch Indicators 53
Power and Cooling Problems 54
Installation 54
In-Band Access 55
B Cables 57
Twisted-Pair Cable and Pin Assignments 57
C Specifications 63
Physical Characteristics 63
Switch Features 65
Management Features 65
Standards 66
Compliances 66
Glossary 67
INDEX 73

\section*{TABLES}
Table 1: System Status LEDs 28
Table 2: 100 Mbps Port Status LEDs (1~24) 29
Table 3: 1000 Mbps Port Status LEDs (25~26) 29
Table 4: Serial Cable Wiring 41
Table 5: System Status LEDs 43
Table 6: Maximum 1000BASE-LX5 Gigabit Ethernet Cable Lengths 48
Table 7: Maximum 1000BASE-LX15 Gigabit Ethernet Cable Length 48
Table 8: Maximum 1000BASE-LHX Gigabit Ethernet Cable Length 49
Table 9: Maximum 1000BASE-ZX Gigabit Ethernet Cable Length 49
Table 10: Maximum 1000BASE-T Gigabit Ethernet Cable Length 49
Table 11: Maximum Fast Ethernet Cable Lengths 49
Table 12: Maximum 100BASE-FX Cable Length 49
Table 13: Maximum Ethernet Cable Length 50
Table 14: Troubleshooting Chart 53
Table 15: 10/100BASE-TX MDI and MDI-X Port Pinouts 58
Table 16: 1000BASE-T MDI and MDI-X Port Pinouts 60
Table 17: 1000BASE-T MDI and MDI-X Port Pinouts 61

\section*{Figures}
Figure 1: Deployment 23
Figure 2: Front Panel 24
Figure 3: Side Panel 24
Figure 4: Port and System LEDs 28
Figure 5: Power Supply Socket 29
Figure 6: RJ-45 Connections 32
Figure 7: Attaching the Adhesive Feet 34
Figure 8: Attaching the Brackets 35
Figure 9: Installing the Switch in a Rack 36
Figure 10: Installing an Optional SFP Transceiver 37
Figure 11: DC Plug Connections 39
Figure 12: AC Power Socket 40
Figure 13: Console Cable 41
Figure 14: Alarm Port (DB-15) Pinout 42
Figure 15: External Alarm I/O Connections 43
Figure 16: Making Connections to SFP Transceivers 47
Figure 17: RJ-45 Connector Pin Numbers 57
Figure 18: Straight-through Wiring 59
Figure 19: Crossover Wiring 59

Figures

\section*{Introduction}

\section*{Overview}

The ECS3810-26T is an intelligent Layer 2 switch designed for aggregating broadband traffic from the edge of a service provider's (CO) network. It aggregates traffic using it's 24 Fast Ethernet ports, and two Gigabit Ethernet combination RJ-45/SFP ports, (see Figure 2 on page 24). The SFP ports allow the switch to receive traffic up to 2 km from the CO using 100BASE-FX fiber transceivers, or up to much greater distances using 1000BASE-LH transceivers, giving you the option of placing the switch either in the CO or anywhere along the path between the CO and subscribers.

Figure 1: Deployment

The switch has a 100BASE-TX port for dedicated management access (which can be operated outside the data channel). It has an SNMP-based management agent embedded on the main board, which supports both in-band and out-ofband access using a Web browser, SNMP/RMON, or Telnet.

CHAPTER 1 | Introduction Overview

Figure 2: Front Panel

Figure 3: Side Panel

\section*{Switch Architecture}

This switch employs a wire-speed, non-blocking switching fabric. This permits simultaneous wire-speed transport of multiple packets at low latency on all ports. The switch also features full-duplex capability on all ports, which effectively doubles the bandwidth of each connection.

The switch uses store-and-forward switching to ensure maximum data integrity. With store-and-forward switching, the entire packet must be received into a buffer and checked for validity before being forwarded. This prevents errors from being propagated throughout the network.

\section*{Network Management Options}

This switch contains a comprehensive array of LEDs for "at-a-glance" monitoring of network and port status. It also includes a management agent that allows you to configure or monitor the switch using its embedded management software, or through SNMP applications. To manage the switch, you can make a direct connection to the console port (out-of-band), or you can manage the switch through a network connection (in-band) using Telnet, the on-board web agent, or SNMP-based network management software.

The switch management port (RJ-45) provides a dedicated management channel that operates outside of the data transport network. This makes it possible to re-configure or troubleshoot the switch over either a local or remote connection to the port when access through the data channel is not possible or deemed insecure.

For a detailed description of the switch's advanced features, refer to the Management Guide.

\section*{Description of Hardware}

\section*{SFP SLots}

The two combination Small Form Factor Pluggable (SFP) transceiver slots are shared with two RJ-45 ports. In its default configuration, if an SFP transceiver (purchased separately) is installed in a slot and has a valid link on its port, the associated RJ-45 port is disabled and cannot be used. The switch can also be configured to force the use of an RJ-45 port or SFP slot, as required.

The SFP slots support the following SFP transceivers:
- 1000 Mbps Ethernet SFP transceivers
- 1000BASE-LX5
- 1000BASE-LX15
- 1000BASE-LHX
- 1000BASE-ZX
- 100 Mbps Ethernet SFP transceivers
- 100BASE-FX

For information on the recommended standards for fiber optic cabling, see "Fiber Optic SFP Devices" on page 46.

\section*{10/100BASE-TX Ports}

The switch contains contains 24 100BASE-TX RJ-45 ports that operate at 10 Mbps or at 100 Mbps , half or full duplex. Because all of the RJ-45 ports support automatic MDI/MDI-X operation, you can use straight-through cables for all network connections to PCs or servers, or to other switches or hubs. (See "10BASE-T/100BASE-TX Pin Assignments" on page 58.)

Each of these ports support auto-negotiation, so the optimum transmission mode (half or full duplex), and data rate (10, or 100 Mbps) can be selected automatically. If a device connected to one of these ports does not support autonegotiation, the communication mode of that port can be configured manually.

Each port also supports auto-negotiation of flow control, so the switch can automatically prevent port buffers from becoming saturated.

\section*{10/100BASE-TX Management Port}

The 10/100BASE-TX port provides a dedicated management interface that is segregated from the data traffic crossing the other ports. This port supports auto-negotiation, so the optimum transmission mode (half or full duplex) and data rate (10 , or 100 Mbps) can be selected automatically, if this feature is also supported by the attached device. However, note that the interface connection parameters of this port cannot be configured.

\section*{Console Port}

The console port on the switch's front panel is an RJ-45 connector that enables a connection to a terminal for performing switch monitoring and configuration functions. The terminal may be a PC or workstation running terminal emulation software, or a terminal configured as a Data Terminal Equipment (DTE) connection. A null-modem wired serial cable is supplied with the switch for connecting to this interface. Refer to "Connecting to the Console Port" on page 41.

\section*{Alarm Interface Port}

The DB-15 alarm port on the switch's front panel can be used to provide 4 external customer site alarm inputs. Refer to "Connecting to the Alarm Port" on page 42 for a description of the pin assignments used to connect to the alarm port.

\section*{Port and System Status LEDs}

This switch includes a display panel for key system and port indications that simplifies installation and network troubleshooting. The LEDs, which are located on the front panel for easy viewing, are shown below and described in the following tables.

Figure 4: Port and System LEDs

Table 1: System Status LEDs
\begin{tabular}{lll}
\hline LED & Condition & Status \\
\hline ALM/MJR & Red & \begin{tabular}{l}
Indicates presence within the system of one or \\
more major traffic-affecting system alarm(s) that \\
are not masked by the alarm filter.
\end{tabular} \\
ALM/MIN & Amber & \begin{tabular}{l}
Indicates presence within the system of one or \\
more minor traffic-affecting system alarm(s) that \\
are not masked by the alarm filter.
\end{tabular} \\
DIAG & Flashing Amber & \begin{tabular}{l}
System self-diagnostic test in progress.
\end{tabular} \\
Amber & Green & \begin{tabular}{l}
System self-diagnostic has failed.
\end{tabular} \\
MGMT & Green & Thempleted. \\
Comang Green & Flashing indicates activity on the port.
\end{tabular}

Table 2: 100 Mbps Port Status LEDs (1~24)
\begin{tabular}{lll}
\hline LED & Condition & Status \\
\hline\((1 \sim 12)\) & On/Flashing Green & \begin{tabular}{l}
Port has established a valid 100 Mbps network \\
connection. Flashing indicates activity.
\end{tabular} \\
& On/Flashing Amber & \begin{tabular}{l}
Port has established a valid 10 Mbps network \\
connection. Flashing indicates activity.
\end{tabular} \\
& Off & There is no valid link on the port. \\
\hline
\end{tabular}

Table 3: 1000 Mbps Port Status LEDs (25~26)
\begin{tabular}{lll}
\hline LED & Condition & Status \\
\hline\((25 \sim 26)\) & On/Flashing Green & \begin{tabular}{l}
Port has established a valid 1000 Mbps network \\
connection. Flashing indicates activity.
\end{tabular} \\
& On/Flashing Amber & \begin{tabular}{l}
Port has established a valid 10/100 Mbps network \\
connection. Flashing indicates activity.
\end{tabular} \\
\hline Off & There is no valid link on the port. \\
\hline
\end{tabular}

\section*{POWER SUPPLY SOCKETS}

There are two power sockets on the front panel of the switch. The standard power socket is for the AC power cord. There is also a DC power supply socket.

Figure 5: Power Supply Socket

Chapter 1 | Introduction
Description of Hardware

\section*{Installing the Switch}

\section*{Selecting a Site}

Switch units can be mounted in a standard 19-inch equipment rack or on a flat surface. Be sure to follow the guidelines below when choosing a location.
- The site should:
- be at the center of all the devices you want to link and near a power outlet.
- be able to maintain its temperature within 0 to \(45^{\circ} \mathrm{C}\left(32\right.\) to \(\left.113^{\circ} \mathrm{F}\right)\) and its humidity within \(10 \%\) to \(90 \%\), non-condensing
- provide adequate space (approximately two inches) on all sides for proper air flow
- be accessible for installing, cabling and maintaining the devices
- allow the status LEDs to be clearly visible
- Make sure twisted-pair cable is always routed away from power lines, fluorescent lighting fixtures and other sources of electrical interference, such as radios and transmitters.
- Make sure that the unit is connected to a separate grounded power outlet that provides 100 to \(240 \mathrm{VAC}, 50\) to 60 Hz , is within 2 m (6.6 feet) of each device and is powered from an independent circuit breaker. As with any equipment, using a filter or surge suppressor is recommended.

\section*{Ethernet Cabling}

To ensure proper operation when installing the switch into a network, make sure that the current cables are suitable for 10BASE-T, 100BASE-TX or 1000BASE-T operation. Check the following criteria against the current installation of your network:
- Cable type: Unshielded twisted pair (UTP) or shielded twisted pair (STP) cables with RJ-45 connectors; Category 3 or better for 10BASE-T, Category 5 or better for 100BASE-TX, and Category 5, 5e or 6 for 1000BASE-T.
- Protection from radio frequency interference emissions
- Electrical surge suppression
- Separation of electrical wires (switch related or other) and electromagnetic fields from data based network wiring
- Safe connections with no damaged cables, connectors or shields

Figure 6: RJ-45 Connections

\section*{Equipment Checklist}

After unpacking this switch, check the contents to be sure you have received all the components. Then, before beginning the installation, be sure you have all other necessary installation equipment.

\section*{Package Contents}
- Fast Ethernet Switch (ECS3810-26T)
- Four adhesive foot pads
- Power cord-either US, Continental Europe or UK
- Bracket Mounting Kit containing two brackets and eight screws for attaching the brackets to the switch
- Power cord-either US, Continental Europe or UK
- Console cable (RJ-45 to DB-9)
- This Installation Guide
- Management Guide CD

\section*{Optional Rack-Mounting Equipment}
- If you plan to rack-mount the switches, be sure to have the following equipmentavailable:
- Four mounting screws for each device you plan to install in a rack-these are not included
- A screwdriver (Phillips or flathead, depending on the type of screws used)

CHAPTER 2 | Installing the Switch Mounting

\section*{Mounting}

The switch can be mounted on a desktop, shelf, or rack mounted. Mounting instructions follow.

\section*{Desktop or Shelf Mounting}
1. Attach the four adhesive feet to the bottom of the first switch.

Figure 7: Attaching the Adhesive Feet

2. Set the device on a flat surface near an \(A C\) power source, making sure there are at least two inches of space on all sides for proper air flow.
3. If installing a single switch only, go to "Connecting to a Power Source" on page 38.
4. If installing multiple switches, attach four adhesive feet to each one. Place each device squarely on top of the one below, in any order.

\section*{Rack Mounting}

Before rack mounting the switch, pay particular attention to the following factors:
- Temperature: Since the temperature within a rack assembly may be higher than the ambient room temperature, check that the rack-environment temperature is within the specified operating temperature range.
- Mechanical Loading: Do not place any equipment on top of a rack-mounted unit.
- Circuit Overloading: Be sure that the supply circuit to the rack assembly is not overloaded.
- Grounding: Rack-mounted equipment should be properly grounded. Particular attention should be given to supply connections other than direct connections to the mains.

To rack-mount devices:
1. Attach the brackets to the device using the screws provided in the Bracket Mounting Kit.

Figure 8: Attaching the Brackets

CHAPTER 2 | Installing the Switch
Mounting
2. Mount the device in the rack, using four rack-mounting screws (not provided).

Figure 9: Installing the Switch in a Rack

\section*{Installing an Optional SFP Transceiver}

Figure 10: Installing an Optional SFP Transceiver

This switch supports 1000BASE-LX5, 1000BASE-LX15, 1000BASE-LHX, 1000BASE-ZX, and 100BASE-FX SFP-compatible transceivers. To install an SFP transceiver, do the following:
1. Consider network and cabling requirements to select an appropriate SFP transceiver type.
2. Insert the transceiver with the optical connector facing outward and the slot connector facing down. Note that SFP transceivers are keyed so they can only be installed in one orientation.
3. Slide the SFP transceiver into the slot until it clicks into place.

Nоте: SFP transceivers are hot-swappable. The switch does not need to be powered off before installing or removing a transceiver. However, always first disconnect the network cable before removing a transceiver.
Note: SFP transceivers are not provided in the switch package.

\section*{Connecting to a Power Source}

This switch supports both AC and DC power supplies.

Caution: The switch is grounded through its AC power cord. When connecting DC power, always connect the AC power cord.

\section*{Connecting DC Power}

When using -48 VDC power, an external DC power supply must be connected to the DC power connector on the left side of the front panel.

Warning: Before wiring the DC plug or connecting power to the switch, ensure that power to the feed lines is turned off at the supply circuit breaker or disconnected from the power bus.

Note: To provide adequate circuit protection between the DC power supply and the switch, all intermediate wiring and circuitry should be rated to carry a load at least two times the maximum rating for this switch (see "Power Supply" on page 64).
Nоте: The wiring between the DC power supply and the switch must be stranded copper wire within the range of 10 to 24 AWG.
Note: Wiring for the power input terminals on the switch are described below. Wiring of the DC power supply terminals depends on the equipment in use on the local site, but should be wired in such a way as to meet the input requirements shown in "DC Plug Connections" on page 39. The wiring should also be color coded according to local standards to ensure that the input power and ground lines can be easily distinguished.

To connect the switch to a power source:
1. First verify that the external DC power supply can provide -42 to -56 VDC, 0.57 A minimum.
2. Prepare two wires for the DC power source. Use 10 to 24 AWG stranded copper wire. Make sure these wires are not plugged into the power source.
3. Use a wire stripper to carefully strip about a half an inch of the outer insulation off the end of each wire, exposing the copper core.
4. Twist the copper wire strands together to form a tight braid. If possible, solder the exposed braid of wire together for better conductivity.
5. Connect the external power feed and power ground/return lines to the DC plug (provided with the switch) as shown in the following figure. The power leads are labeled on the front of the chassis, above the DC power connection block. The -48 VDC power feed connects to the "-" input and the ground return line to the " + " input. Use a small flat-tip screwdriver to loosen the screws on the power plug and open the wire clamps.

Figure 11: DC Plug Connections

6. Insert the wire leads into the openings shown in the figure below. Each lead inserted in the power plug must match the lead attached to the power source. Use the label above the DC power connection block to identify the appropriate power input and return or ground lines.

WARning: If the power leads are plugged into the wrong holes, the power supply will not work properly and may damage the switch.
7. Push each wire about half an inch into the opening on the plug, and tighten down the clamp screw securely. You should not be able to pull on the wire and dislodge it.
8. Insert the power plug in the power receptacle on the left side of the front panel.
9. At the power source, turn on the power for the feed lines or power bus.
10. Check the the PWR LED indicator as the switch is powered on. If not, recheck the power supply and power cable connections at the supply source and at power conversion module.

\section*{Connecting AC Power}

To connect the switch to an AC power source:
1. First verify that the external AC power supply can provide 100 to 240 VAC, \(50-60 \mathrm{~Hz}, 0.33 \mathrm{~A}\) minimum.
2. Plug the power cable into a grounded, 3-pin, AC power source.

Note: For international use, you may need to change the AC line cord. You must use a line cord set that has been approved for the socket type in your country.
3. Insert the plug on the other end of the power cable directly into the socket on the switch.

Figure 12: AC Power Socket

4. After the power source is connected, set the power switch on the front of the switch to the ON position (marked "-").
5. Check that the PWR LED indicator on the switch is on. If not, recheck the power supply and power cable connections at the supply source and at power module.

\section*{Connecting to the Console Port}

This port is used to connect a console device to the switch through a serial cable. The console device can be a PC or workstation running a VT-100 terminal emulator, or a VT-100 terminal. A crossover RJ-45 to DB-9 cable is supplied with the unit for connecting to the console port, as illustrated below. The pin assignments used to connect to the serial port are described below.

Figure 13: Console Cable

\section*{Wiring Map for Serial Cable}

Table 4: Serial Cable Wiring
\begin{tabular}{|c|c|c|}
\hline Switch's 8-Pin Serial Port & Null Modem & PC's 9-Pin DTE Port \\
\hline 6 RXD (receive data) & <---------------------------- & 3 TXD (transmit data) \\
\hline 3 TXD (transmit data) & -> & 2 RXD (receive data) \\
\hline 5 SGND (signal ground) & --- & 5 SGND (signal ground) \\
\hline
\end{tabular}

The serial port's configuration requirements are as follows:
- Default Baud rate-115,200 bps
- Character Size-8 Characters
- Parity-None
- Stop bit-One
- Data bits-8
- Flow control-none

\section*{Connecting to the Alarm Port}

The DB-15 alarm port on the switch's front panel is used to provide 4 external customer site alarm inputs. The pin assignments used to connect to the alarm port are provided in the following table.

Figure 14: Alarm Port (DB-15) Pinout

15

Table 5: System Status LEDs
\begin{tabular}{ll}
\hline Switch's Alarm Port & Function \\
\hline 3 (ALARM_IN3_EXT_P*) & \begin{tabular}{l}
External alarm input 3 (external relay dry contact closure to \\
pin 13).
\end{tabular} \\
4 (ALARM_IN4_EXT_P) & \begin{tabular}{l}
External alarm input 4 (external relay dry contact closure to \\
pin 8).
\end{tabular} \\
5 (No Contact) & \begin{tabular}{l}
External alarm input 1 (external relay dry contact closure to \\
pin14).
\end{tabular} \\
\hline 10 (ALARM_IN4_EXT_RTN+) & \begin{tabular}{l}
External alarm input 4 (external relay dry contact closure \\
from pin 3).
\end{tabular} \\
13 (ALARM_IN3_EXT_RTN) & \begin{tabular}{l}
External alarm input 3 (external relay dry contact closure \\
pin 15).
\end{tabular} \\
14 (ALARM pin 3).
\end{tabular}
* P indicates positive input.
\(\dagger\) RTN indicates return to Ground.

The following figure shows the pinout information for the DB-15 ALARM connector on the front panel.

Figure 15: External Alarm I/O Connections

\section*{Alarm Connector}

To backplane via internal signal converter circuits.
External input uses dry relay contact to pins 14, 15, 13 and 8 for grounding. For active alarm, the relay is closed.

Chapter 2 | Installing the Switch
Connecting to the Alarm Port

\section*{Making Network Connections}

\section*{Connecting Network Devices}

This switch is designed to connect broadband access network devices to aggregation network devices in the service provider CO. It can connect to twisted-pair devices through its RJ-45 ports, or to fiber-optic devices through SFP transceivers.

\section*{Twisted-Pair Devices}

Each device requires an unshielded twisted-pair (UTP) cable with RJ-45 connectors at both ends. Use Category 5, 5e or 6 cable for 1000BASE-T connections, Category 5 or better for 100BASE-TX connections, and Category 3 or better for 10BASE-T connections.

\section*{Cabling Guidelines}

The RJ-45 ports on the switch support automatic MDI/MDI-X pinout configuration, so you can use standard straight-through twisted-pair cables to connect to any other network device (PCs, servers, switches, routers, or hubs). See "Cables" on page 57 for further information on cabling.

CAUtion: Do not plug a phone jack connector into an RJ-45 port. This will damage the switch. Use only twisted-pair cables with RJ-45 connectors that conform to FCC standards.

\section*{Connecting to PCs, Servers, Hubs and Switches}
1. Attach one end of a twisted-pair cable segment to the device's RJ-45 connector.
2. Attach the other end to an available port on the switch.

Make sure each twisted pair cable does not exceed 100 meters (328 ft) in length.
3. As each connection is made, the relevant Port LED (on the switch) corresponding to each port will light green or amber to indicate that the connection is valid.

\section*{Fiber Optic SFP Devices}

An optional Gigabit SFP transceiver (1000BASE-LX5, 1000BASE-LX15, 1000BASE-LHX, or 1000BASE-ZX) or 100BASE-FX SFP transceiver can be used for a backbone connection between switches, or for connecting to a high-speed server.

Each single-mode fiber port requires 9/125 micron single-mode fiber optic cable with an LC connector at both ends. Each multimode fiber optic port requires 50/ 125 or \(62.5 / 125\) micron multimode fiber optic cabling with an LC connector at both ends.

> Warning: This switch uses lasers to transmit signals over fiber optic cable. The lasers are compliant with the requirements of a Class 1 Laser Product and are inherently eye safe in normal operation. However, you should never look directly at a transmit port when it is powered on.

Note: When selecting a fiber SFP device, considering safety, please make sure that it can function at a temperature that is not less than the recommended maximum operational temperature of the product. You must also use an approved Laser Class 1 SFP transceiver.
1. Remove and keep the LC port's rubber cover. When not connected to a fiber cable, the rubber cover should be replaced to protect the optics.
2. Check that the fiber terminators are clean. You can clean the cable plugs by wiping them gently with a clean tissue or cotton ball moistened with a little ethanol. Dirty fiber terminators on fiber cables will impair the quality of the
light transmitted through the cable and lead to degraded performance on the port.
3. Connect one end of the cable to the LC port on the switch and the other end to the LC port on the other device. Since LC connectors are keyed, the cable can be attached in only one orientation.

Figure 16: Making Connections to SFP Transceivers

4. As a connection is made, check the Link LED on the switch corresponding to the port to be sure that the connection is valid.

The 1000BASE-LX5, 1000BASE-LX15, 1000BASE-LHX, and 1000BASE-ZX fiber optic ports operate at 1 Gbps full duplex. The maximum length for fiber optic cable operating at Gigabit speed will depend on the fiber type as listed under "1000 Mbps Gigabit Ethernet Collision Domain" on page 48.

The 100BASE-FX fiber optic ports operate at 100 Mbps full duplex. The maximum length for fiber optic cable operating at 100 Mbps speed is listed under "100 Mbps Fast Ethernet Collision Domain" on page 49.

\section*{Connectivity Rules}

When adding hubs (repeaters) to your network, please follow the connectivity rules listed in the manuals for these products. However, note that because switches break up the path for connected devices into separate collision domains, you should not include the switch or connected cabling in your calculations for cascade length involving other devices.

\section*{1000BASE-T Cable Requirements}

All Category 5 UTP cables that are used for 100BASE-TX connections should also work for 1000BASE-T, providing that all four wire pairs are connected. However, it is recommended that for all critical connections, or any new cable installations, Category 5e (enhanced Category 5) or Category 6 cable should be used. The Category 5 e and 6 specifications include test parameters that are only recommendations for Category 5. Therefore, the first step in preparing existing Category 5 cabling for running 1000BASE-T is a simple test of the cable installation to be sure that it complies with the IEEE 802.3-2005 standards.

\section*{1000 Mbps Gigabit Ethernet Collision Domain}

Table 6: Maximum 1000BASE-LX5 Gigabit Ethernet Cable Lengths
\begin{tabular}{llll}
\hline Fiber Size & Fiber Bandwidth & Maximum Cable Length & Connector \\
\hline \begin{tabular}{l}
\(9 / 125\) micron single- \\
mode fiber
\end{tabular} & N/A & \(5 \mathrm{~km}(3.1 \mathrm{miles})\) & LC \\
\hline
\end{tabular}

Table 7: Maximum 1000BASE-LX15 Gigabit Ethernet Cable Length
\begin{tabular}{llll}
\hline Fiber Size & Fiber Bandwidth & Maximum Cable Length & Connector \\
\hline \begin{tabular}{l}
\(9 / 125\) micron single- \\
mode fiber
\end{tabular} & N/A & \(15 \mathrm{~km}(9.3\) miles \()\) & LC \\
\hline
\end{tabular}

Table 8: Maximum 1000BASE-LHX Gigabit Ethernet Cable Length
\begin{tabular}{llll}
\hline Fiber Size & Fiber Bandwidth & Maximum Cable Length & Connector \\
\hline \begin{tabular}{l}
\(9 / 125\) micron single- \\
mode fiber
\end{tabular} & N/A & \(40 \mathrm{~km}(24.9\) miles \()\) & LC \\
\hline
\end{tabular}

Table 9: Maximum 1000BASE-ZX Gigabit Ethernet Cable Length
\begin{tabular}{llll}
\hline Fiber Size & Fiber Bandwidth & Maximum Cable Length & Connector \\
\hline \begin{tabular}{l}
\(9 / 125\) micron single- \\
mode fiber
\end{tabular} & N/A & \(70 \mathrm{~km}(43.5\) miles \()\) & LC \\
\hline
\end{tabular}

Table 10: Maximum 1000BASE-T Gigabit Ethernet Cable Length
\begin{tabular}{lll}
\hline Cable Type & Maximum Cable Length & Connector \\
\hline Category 5, 5e, or 6 100-ohm UTP or STP & \(100 \mathrm{~m}(328 \mathrm{ft})\) & RJ-45 \\
\hline
\end{tabular}

\section*{100 Mbps Fast Ethernet Collision Domain}

Table 11: Maximum Fast Ethernet Cable Lengths
\begin{tabular}{llll}
\hline Type & Cable Type & Max. Cable Length & Connector \\
\hline 100BASE-TX & \begin{tabular}{l}
Category 5 or better 100-ohm \\
\\
UTP or STP
\end{tabular} & \(100 \mathrm{~m}(328 \mathrm{ft})\) & RJ-45 \\
\hline
\end{tabular}

Table 12: Maximum 100BASE-FX Cable Length
\begin{tabular}{llll}
\hline Type & Fiber Type & Max. Cable Length & Connector \\
\hline 100BASE-FX & \begin{tabular}{l}
9/125 micron single-mode \\
fiber
\end{tabular} & \begin{tabular}{l}
\(2 \mathrm{~m}-20 \mathrm{~km}\) \\
\((7 \mathrm{ft}-12.43\) miles \()\)
\end{tabular} & LC \\
& \begin{tabular}{l}
\(62.5 / 125\) or \(50 / 125\) \\
multimode fiber
\end{tabular} & up to \(2 \mathrm{~km}(1.24\) miles \()\) & LC \\
\hline
\end{tabular}

\section*{10 Mbps Ethernet Collision Domain}

Table 13: Maximum Ethernet Cable Length
\begin{tabular}{llll}
\hline Type & Cable Type & Max. Cable Length & Connector \\
\hline 10BASE-T & Category 3 or better 100-ohm UTP & \(100 \mathrm{~m}(328 \mathrm{ft})\) & RJ-45 \\
\hline
\end{tabular}

\section*{Application Notes}
1. Full-duplex operation only applies to point-to-point access (such as when a switch is attached to a workstation, server or another switch). When the switch is connected to a hub, both devices must operate in half-duplex mode.
2. To interconnect distinct VLANs or IP subnets, you can attach the switch to a standard Layer 3 router. For network applications that require routing between dissimilar network types, attach the switch to a multi-protocol router.
3. As a general rule, the length of fiber optic cable for a single switched link should not exceed:
- 1000BASE-LX5: 5 km (3.1 miles) for single-mode fiber, duplex fiber
- 1000BASE-LX15: 15 km (6.2 miles) for single-mode fiber, duplex fiber
- 1000BASE-LHX: 40 km (24.9 miles) for single-mode fiber, duplex fiber
- 1000BASE-ZX: 70 km (43.5 miles) for single-mode fiber, duplex fiber
- 100BASE-FX: 2 km (1.24 miles) for single-mode fiber, duplex fiber

However, power budget constraints must also be considered when calculating the maximum cable length for your specific environment.

\section*{Cable Labeling and Connection Records}

When planning a network installation, it is essential to label the opposing ends of cables and to record where each cable is connected. Doing so will enable you to easily locate inter-connected devices, isolate faults and change your topology without need for unnecessary time consumption.

To best manage the physical implementations of your network, follow these guidelines:
- Clearly label the opposing ends of each cable.
- Using your building's floor plans, draw a map of the location of all networkconnected equipment. For each piece of equipment, identify the devices to which it is connected.
- Note the length of each cable and the maximum cable length supported by the switch ports.
- For ease of understanding, use a location-based key when assigning prefixes to your cable labeling.
- Use sequential numbers for cables that originate from the same equipment.
- Differentiate between racks by naming accordingly.
- Label each separate piece of equipment.
- Display a copy of your equipment map, including keys to all abbreviations at each equipment rack.

Chapter 3 | Making Network Connections Cable Labeling and Connection Records

\section*{Troubleshooting}

\section*{Diagnosing Switch Indicators}

\section*{Table 14: Troubleshooting Chart}
\begin{tabular}{ll}
\hline Symptom & \begin{tabular}{l}
Check connections between the switch, the power cord and \\
the wall outlet. \\
Contact your dealer for assistance.
\end{tabular} \\
\hline PWR LED is Off & \begin{tabular}{l}
Verify that the switch and attached device are powered on. \\
Be sure the cable is plugged into both the switch and \\
corresponding device.
\end{tabular} \\
If the switch is installed in a rack, check the connections to \\
the punch-down block and patch panel. \\
Verify that the proper cable type is used and its length does \\
not exceed specified limits. \\
Check the adapter on the attached device and cable \\
connections for possible defects. Replace the defective \\
adapter or cable if necessary.
\end{tabular}

Table 14: Troubleshooting Chart (Continued)
\begin{tabular}{lll}
\hline Symptom & Action \\
\hline Major LED is Red & \begin{tabular}{l}
One or more major system alarm(s) affecting traffic have \\
occurred. \\
Check the alarm filter mask to determine potential cause(s) \\
of alarm.
\end{tabular} \\
\hline Minor LED is Amber & \begin{tabular}{l}
One or more minor system alarm(s) affecting traffic have \\
occurred. \\
Check the alarm filter mask to determine potential cause(s) \\
of alarm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Power and Cooling Problems}

If the power indicator does not turn on when the power cord is plugged in, you may have a problem with the power outlet, power cord, or internal power supply. However, if the unit powers off after running for a while, check for loose power connections, power losses or surges at the power outlet. If you still cannot isolate the problem, the internal power supply may be defective.

\section*{InstaLLATION}

Verify that all system components have been properly installed. If one or more components appear to be malfunctioning (such as the power cord or network cabling), test them in an alternate environment where you are sure that all the other components are functioning properly.

\section*{In-Band Access}

You can access the management agent in the switch from anywhere within the attached network using Telnet, a Web browser, or other network management software tools. However, you must first configure the switch with a valid IP address, subnet mask, and default gateway. If you have trouble establishing a link to the management agent, check to see if you have a valid network connection. Then verify that you entered the correct IP address. Also, be sure the port through which you are connecting to the switch has not been disabled. If it has not been disabled, then check the network cabling that runs between your remote location and the switch.

Caution: The management agent can accept up to four simultaneous Telnet sessions. If the maximum number of sessions already exists, an additional Telnet connection will not be able to log into the system.

ApPENDIX A | Troubleshooting
In-Band Access

\section*{Cables}

\section*{Twisted-Pair Cable and Pin Assignments}

For 10/100BASE-TX connections, the twisted-pair cable must have two pairs of wires. For 1000BASE-T connections the twisted-pair cable must have four pairs of wires. Each wire pair is identified by two different colors. For example, one wire might be green and the other, green with white stripes. Also, an RJ-45 connector must be attached to both ends of the cable.

Caution: DO NOT plug a phone jack connector into any RJ-45 port. Use only twisted-pair cables with RJ-45 connectors that conform with FCC standards.

Caution: Each wire pair must be attached to the RJ-45 connectors in a specific orientation.

The figure below illustrates how the pins on the RJ-45 connector are numbered. Be sure to hold the connectors in the same orientation when attaching the wires to the pins.

Figure 17: RJ-45 Connector Pin Numbers

\section*{10BASE-T/100BASE-TX Pin Assignments}

Use unshielded twisted-pair (UTP) or shielded twisted-pair (STP) cable for RJ-45 connections: 100-ohm Category 3 or better cable for 10 Mbps connections, or 100 -ohm Category 5 or better cable for 100 Mbps connections. Also be sure that the length of any twisted-pair connection does not exceed 100 meters (328 feet).

The RJ-45 ports on the switch base unit support automatic MDI/MDI-X operation, so you can use straight-through cables for all network connections to PCs or servers, or to other switches or hubs. In straight-through cable, pins 1, 2, 3 , and 6 , at one end of the cable, are connected straight through to pins \(1,2,3\), and 6 at the other end of the cable. When using any RJ-45 port on this switch, you can use either straight-through or crossover cable.

Table 15: 10/100BASE-TX MDI and MDI-X Port Pinouts
\begin{tabular}{lll}
\hline Pin & MDI Signal Name & MDI-X Signal Name \\
\hline 1 & Transmit Data plus (TD+) & Receive Data plus (RD+) \\
2 & Transmit Data minus (TD-) & Receive Data minus (RD-) \\
3 & Receive Data plus (RD+) & Transmit Data plus (TD+) \\
6 & Receive Data minus (RD-) & Transmit Data minus (TD-) \\
\(4,5,7,8\) & Not used & Not used \\
\hline
\end{tabular}

Note: The " + " and " - " signs represent the polarity of the wires that make up each wire pair.

\section*{Straight-Through Wiring}

If the twisted-pair cable is to join two ports and only one of the ports has an internal crossover (MDI-X), the two pairs of wires must be straight-through. (When auto-negotiation is enabled for any RJ-45 port on this switch, you can use either straight-through or crossover cable to connect to any device type.)

You must connect all four wire pairs as shown in the following diagram to support Gigabit Ethernet.

Figure 18: Straight-through Wiring
EIA/TIA 568B RJ-45 Wiring Standard 10/100BASE-TX Straight-through Cable

\section*{Crossover Wiring}

If the twisted-pair cable is to join two ports and either both ports are labeled with an "X" (MDI-X) or neither port is labeled with an "X" (MDI), a crossover must be implemented in the wiring. (When auto-negotiation is enabled for any RJ-45 port on this switch, you can use either straight-through or crossover cable to connect to any device type.)

You must connect all four wire pairs as shown in the following diagram to support Gigabit Ethernet.

Figure 19: Crossover Wiring

\author{
EIA/TIA 568B RJ-45 Wiring Standard 10/100BASE-TX Crossover Cable
}

\section*{1000BASE-T Pin Assignments}

All 1000BASE-T ports support automatic MDI/MDI-X operation, so you can use straight-through cables for all network connections to PCs or servers, or to other switches or hubs.

The table below shows the 1000BASE-T MDI and MDI-X port pinouts. These ports require that all four pairs of wires be connected. Note that for 1000BASE-T operation, all four pairs of wires are used for both transmit and receive.

Use 100-ohm Category 5, 5e or 6 unshielded twisted-pair (UTP) or shielded twisted-pair (STP) cable for 1000BASE-T connections. Also be sure that the length of any twisted-pair connection does not exceed 100 meters (328 feet).

Table 16: 1000BASE-T MDI and MDI-X Port Pinouts
\begin{tabular}{lll}
\hline Pin & MDI Signal Name & MDI-X Signal Name \\
\hline 1 & Bi-directional Pair A Plus (BI_DA+) & Bi-directional Pair B Plus (BI_DB+) \\
2 & Bi-directional Pair A Minus (BI_DA-) & Bi-directional Pair B Minus (BI_DB-) \\
3 & Bi-directional Pair B Plus (BI_DB+) & Bi-directional Pair A Plus (BI_DA+) \\
4 & Bi-directional Pair C Plus (BI_DC+) & Bi-directional Pair D Plus (BI_DD+) \\
5 & Bi-directional Pair C Minus (BI_DC-) & Bi-directional Pair D Minus (BI_DD-) \\
6 & Bi-directional Pair B Minus (BI_DB-) & Bi-directional Pair A Minus (BI_DA-) \\
7 & Bi-directional Pair D Plus (BI_DD+) & Bi-directional Pair C Plus (BI_DC+) \\
8 & Bi-directional Pair D Minus (BI_DD-) & Bi-directional Pair C Minus (BI_DC-) \\
\hline
\end{tabular}

\section*{Cable Testing for Existing Category 5 Cable}

Installed Category 5 cabling must pass tests for Attenuation, Near-End Crosstalk (NEXT), and Far-End Crosstalk (FEXT). This cable testing information is specified in the ANSI/TIA/EIA-TSB-67 standard. Additionally, cables must also pass test parameters for Return Loss and Equal-Level Far-End Crosstalk (ELFEXT). These tests are specified in the ANSI/TIA/EIA-TSB-95 Bulletin, "The Additional Transmission Performance Guidelines for 100 Ohm 4-Pair Category 5 Cabling."

Note that when testing your cable installation, be sure to include all patch cables between switches and end devices.

\section*{Adjusting Existing Category 5 Cabling to Run 1000BASE-T}

If your existing Category 5 installation does not meet one of the test parameters for 1000BASE-T, there are basically three measures that can be applied to try and correct the problem:
1. Replace any Category 5 patch cables with high-performance Category 5 e or Category 6 cables.
2. Reduce the number of connectors used in the link.
3. Reconnect some of the connectors in the link.

\section*{Fiber Standards}

The International Telecommunication Union (ITU-T) has standardized various fiber types for data networks. These are summarized in the following table.

Table 17: 1000BASE-T MDI and MDI-X Port Pinouts
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
ITU-T \\
Standard
\end{tabular} & Description & Application \\
\hline G. 651 & Multimode Fiber 50/125-micron core & Short-reach connections in the \(1300-\mathrm{nm}\) or \(850-\mathrm{nm}\) band. \\
\hline G. 652 & Non-Dispersion-Shifted FiberSingle-mode, 9/125micron core & Longer spans and extended reach. Optimized for operation in the \(1310-\mathrm{nm}\) band. but can also be used in the \(1550-\mathrm{nm}\) band. \\
\hline G.652.C & \begin{tabular}{l}
Low Water Peak \\
Non-Dispersion-Shifted Fiber Single-mode, 9/125-micron core
\end{tabular} & Longer spans and extended reach. Optimized for wavelength-division multiplexing (WDM) transmission across wavelengths from 1285 to 1625 nm . The zero dispersion wavelength is in the \(1310-\mathrm{nm}\) region. \\
\hline G. 653 & Dispersion-Shifted Fiber Single-mode, 9/125-micron core & Longer spans and extended reach. Optimized for operation in the region from 1500 to \(1600-\mathrm{nm}\). \\
\hline
\end{tabular}

Appendix B | Cables
Twisted-Pair Cable and Pin Assignments

Table 17: 1000BASE-T MDI and MDI-X Port Pinouts (Continued)
\begin{tabular}{lll}
\hline \begin{tabular}{l}
ITU-T \\
Standard
\end{tabular} & Description & Application \\
\hline G.654 & \begin{tabular}{l}
1550-nm Loss-Minimized \\
FiberSingle-mode, 9/125- \\
micron core
\end{tabular} & \begin{tabular}{l}
Extended long-haul applications. \\
Optimized for high-power \\
transmission in the 1500 to 1600-nm \\
region, with low loss in the 1550-nm \\
band.
\end{tabular} \\
G.655 & \begin{tabular}{l}
Non-Zero Dispersion-Shifted \\
FiberSingle-mode, 9/125- \\
micron core
\end{tabular} & \begin{tabular}{l}
Extended long-haul applications. \\
Optimized for high-power dense \\
wavelength-division multiplexing \\
(DWDM) operation in the region from
\end{tabular} \\
1500 to 1600-nm.
\end{tabular}

\section*{Specifications}

\section*{Physical Characteristics}

\author{
Ports \\ 24 RJ-45 ports, \(10 / 100\) Mbps, with auto-negotiation, 2 combination RJ-45/SFP ports, 10/100/1000 Mbps, with auto-negotiation, 1 100BASE-TX management port
}

\author{
Network Interface \\ Ports 1-24: RJ-45 connector, auto MDI/X \\ 10BASE-T: RJ-45 (100-ohm, UTP cable; Category 3 or better) 100BASE-TX: RJ-45 (100-ohm, UTP cable; Category 5 or better) \\ *Maximum Cable Length - 100 m (328 ft)
}

Ports 25-26: RJ-45 and SFP connector, auto MDI/X
1000BASE-T: RJ-45 (100-ohm, UTP or STP cable; Category 5, 5e or 6)
*Maximum Cable Length - 100 m (328 ft)

\section*{Buffer Architecture}

4 Mbit packet buffer

\section*{Aggregate Bandwidth}

48 Gbps

\section*{Switching Database}

8K MAC address entries, 1024 static MAC addresses;

APPENDIX C | Specifications
Physical Characteristics

\section*{LEDs}

System: PWR, DIAG, MGMT, ALM/MJR, ALM/MIN Port: Status (link, speed, and activity)

\section*{Weight}
3.2 kg (7.05 lbs)

\section*{Size}
(\(\mathrm{W} \times \mathrm{D} \times \mathrm{H}\)): \(252 \mathrm{~mm} \times 440 \mathrm{~mm} \times 44 \mathrm{~mm}\) (\(9.92 \times 17.32 \times 1.73\) inches)

\section*{Temperature}

Operating: \(0^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.\) to \(\left.140^{\circ} \mathrm{F}\right)\)
Storage: \(-40^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.\) to \(\left.158^{\circ} \mathrm{F}\right)\)

\section*{Humidity}

Operating: 10\% to \(90 \%\) (non-condensing)

\section*{AC Input}

100 to \(240 \mathrm{~V}, 50-60 \mathrm{~Hz}, 0.33 \mathrm{~A}\)

DC Input
-42 to -56, 0.57A

\section*{Power Supply}

Internal, auto-ranging transformer: 100 to 240 VAC, 50 to 60 Hz

\section*{Power Consumption}

19 Watts maximum

\section*{Maximum Current}
0.31 A @ 100 VAC
0.15 A @ 240 VAC

\section*{Switch Features}

Forwarding Mode
Store-and-forward

Throughput
Wire speed

Flow Control
Full Duplex: IEEE 802.3x
Half Duplex: Back pressure

\section*{Management Features}

\section*{In-Band Management}

Web, Telnet, SSH, or SNMP manager

Out-of-Band Management
RS-232 RJ-45 console port

\section*{Software Loading}

HTTP and FTP/TFTP in-band, or XModem out-of-band

\section*{StANDARDS}

\section*{IEEE 802.3-2005}

Ethernet, Fast Ethernet, Gigabit Ethernet
Full-duplex flow control
IEEE 802.1D Spanning Tree Protocol
IEEE 802.1w Rapid Spanning Tree Protocol
IEEE 802.1s Multiple Spanning Tree Protocol
IEEE 802.1Q Virtual LAN
ISO/IEC 8802-3 CSMA/CD

\section*{Compliances}

\section*{Emissions}

EN 55022:2007, Class A/B
EN 61000-3-2:2006, Class A
EN 61000-3-3:2005

Immunity
EN 55024:2001 + A2:2003
IEC 61000-4-2/3/4/5/6/8/11

\section*{SAfETY}

CSA (CSA 22.2 NO 60950-1 \& UL 60950-1)
CB (IEC/EN60950-1)

\section*{Glossary}

\section*{10BASE-T}

IEEE 802.3 specification for 10 Mbps Ethernet over two pairs of Category 3, 4, or 5 UTP cable.

\section*{100BASE-FX}

Medium-haul Gigabit Ethernet over two strands of \(9 / 125\) micron, or \(62.5 / 125\) or 50/125 multimode fiber core fiber cable.

\section*{100BASE-TX}

IEEE 802.3u specification for 100 Mbps Ethernet over two pairs of Category 5 UTP cable.

\section*{1000BASE-T}

IEEE 802.3ab specification for Gigabit Ethernet over 100-ohm Category 5, 5e or 6 twisted-pair cable (using all four wire pairs).

\section*{1000BASE-LHX}

Long-haul Gigabit Ethernet over two strands of 9/125 micron core fiber cable.

\section*{1000BASE-LX5}

Long-haul Gigabit Ethernet over two strands of 9/125 micron core fiber cable.

\section*{1000BASE-LX15}

Long-haul Gigabit Ethernet over two strands of 9/125 micron core fiber cable.

\section*{1000BASE-ZX}

Long-haul Gigabit Ethernet over two strands of 9/125 micron core fiber cable.

\section*{1000BASE-T}

IEEE 802.3ab specification for Gigabit Ethernet over 100-ohm Category 5, 5e or 6 twisted-pair cable (using all four wire pairs).

\section*{Auto-Negotiation}

Signalling method allowing each node to select its optimum operational mode (e.g., speed and duplex mode) based on the capabilities of the node to which it is connected.

\section*{BANDWIDTH}

The difference between the highest and lowest frequencies available for network signals. Also synonymous with wire speed, the actual speed of the data transmission along the cable.

\section*{Collision Domain}

Single CSMA/CD LAN segment.

\section*{CSMA/CD}

CSMA/CD (Carrier Sense Multiple Access/Collision Detect) is the communication method employed by Ethernet, Fast Ethernet, and Gigabit Ethernet.

\section*{End Station}

A workstation, server, or other device that does not forward traffic.

\section*{Ethernet}

A network communication system developed and standardized by DEC, Intel, and Xerox, using baseband transmission, CSMA/CD access, logical bus topology, and coaxial cable. The successor IEEE 802.3 standard provides for integration into the OSI model and extends the physical layer and media with repeaters and implementations that operate on fiber, thin coax and twisted-pair cable.

\section*{Fast Ethernet}

A 100 Mbps network communication system based on Ethernet and the CSMA/ CD access method.

\section*{Full Duplex}

Transmission method that allows two network devices to transmit and receive concurrently, effectively doubling the bandwidth of that link.

\section*{Gigabit Ethernet}

A 1000 Mbps network communication system based on Ethernet and the CSMA/ CD access method.

\section*{IEEE}

Institute of Electrical and Electronic Engineers.

\section*{IEEE 802.3}

Defines carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications.

\section*{IEEE 802.3Ab}

Defines CSMA/CD access method and physical layer specifications for 1000BASE-T Gigabit Ethernet. (Now incorporated in IEEE 802.3-2005.)

\section*{IEEE 802.3u}

Defines CSMA/CD access method and physical layer specifications for 100BASETX Fast Ethernet. (Now incorporated in IEEE 802.3-2005.)

\section*{IEEE 802.3x}

Defines Ethernet frame start/stop requests and timers used for flow control on full-duplex links. (Now incorporated in IEEE 802.3-2005.)

\section*{IEEE 802.3z}

Defines CSMA/CD access method and physical layer specifications for 1000BASE Gigabit Ethernet. (Now incorporated in IEEE 802.3-2005.)

\section*{LAN Segment}

Separate LAN or collision domain.

\section*{LED}

Light emitting diode used for monitoring a device or network condition.

\section*{Local Area Network (LAN)}

A group of interconnected computer and support devices.

\section*{Media Access Control (MAC)}

A portion of the networking protocol that governs access to the transmission medium, facilitating the exchange of data between network nodes.

\section*{MIB}

An acronym for Management Information Base. It is a set of database objects that contains information about the device.

\section*{Modal Bandwidth}

Bandwidth for multimode fiber is referred to as modal bandwidth because it varies with the modal field (or core diameter) of the fiber. Modal bandwidth is specified in units of MHz per km , which indicates the amount of bandwidth supported by the fiber for a one km distance.

\section*{Network Diameter}

Wire distance between two end stations in the same collision domain.

\section*{RJ-45 Connector}

A connector for twisted-pair wiring.

\section*{Switched Ports}

Ports that are on separate collision domains or LAN segments.

\section*{TIA}

Telecommunications Industry Association

\section*{Transmission Control Protocol/Internet Protocol (TCP/IP)}

Protocol suite that includes TCP as the primary transport protocol, and IP as the network layer protocol.

\section*{User Datagram Protocol (UDP)}

UDP provides a datagram mode for packet-switched communications. It uses IP as the underlying transport mechanism to provide access to IP-like services.
UDP packets are delivered just like IP packets - connection-less datagrams that may be discarded before reaching their targets. UDP is useful when TCP would be too complex, too slow, or just unnecessary.

UTP
Unshielded twisted-pair cable.

\section*{Virtual LAN (VLAN)}

A Virtual LAN is a collection of network nodes that share the same collision domain regardless of their physical location or connection point in the network. A VLAN serves as a logical workgroup with no physical barriers, allowing users to share information and resources as though located on the same LAN.

\section*{Index}

\section*{Numerics}

10 Gbps connectivity rules 48
10 Mbps connectivity rules 48,50
100 Mbps connectivity rules 49
1000 Mbps connectivity rules 48
1000BASE-LH fiber cable Lengths 49
1000BASE-LX fiber cable Lengths 48
1000BASE-SX fiber cable Lengths 48 1000BASE-T
pin assignments 60
100BASE-TX, cable lengths 49
10BASE-T, cable lengths 48, 50

\section*{A}
adhesive feet, attaching 34 air flow requirements 31

\section*{B}
buffer size 63

\section*{C}
cable
Ethernet cable compatibility 32
fiber standards 61
labeling and connection records 51
lengths 48, 49
compliances
EMC 66
safety 66
connecting to the console port 41
connectivity rules
10 Gbps 48
\(10 \mathrm{Mbps} 48,50\)
100 Mbps 49
1000 Mbps 48
contents of package 33
cooling problems 54

\section*{D}
desktop mounting 34
device connections 45

\section*{E}
electrical interference, avoiding 31
equipment checklist 33
Ethernet connectivity rules 48, 50

\section*{F}

Fast Ethernet connectivity rules 49
front panel of switch 24

\section*{G}

\section*{Gigabit Ethernet cable lengths 48}

\section*{I}
indicators, LED 28
installation
connecting devices to the switch 45
desktop or shelf mounting 34
port connections 45
power requirements 31
problems 54
rack mounting 34
site requirements 31

\section*{L}

LED indicators
PWR 28
location requirements 31

\section*{M}
mounting the switch
in a rack 34
on a desktop or shelf 34

\section*{N}
network
\[
\text { connections } 45
\]
P

\section*{Index}
```

pin assignments 57
1000BASE-T }6

```
 10BASE-T/100BASE-TX 58
ports, connecting to 45
power, connecting to 40

\section*{R}
rack mounting 34
rear panel of switch 24
RJ-45 port
 connections 45
 pinouts 60, 61
rubber foot pads, attaching 34
S
serial cable wiring map 41
SFP transceiver slots 28
site selelction 31
specifications
 compliances 66
 environmental 64
 power 64
standards
 compliance 66
 IEEE 66
status LEDs 28
surge suppressor, using 31
switch architecture 24
T
troubleshooting
 in-band access 54
 power and cooling problems 54
twisted-pair connections 45```

